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Abstract—Accurate power quality disturbance (PQD)
classification is significantly important for power grid pol-
lution control. However, the use of non-linear loads makes
power system signals complex and distorted, and thus
increases the difficulty of detecting and classifying PQD
signals. To address this issue, this paper first proposes an
optimized S-Transform (OST). It optimizes different window
parameters to improve time-frequency resolution using
maximum energy concentration. A kernel support vector
machine (KSVM) classifier is proposed to classify multiple
features using a combination of kernels. Integrating OST
and KSVM, a classification framework is further proposed
to detect and classify various PQD signals. Extensive ex-
periments on computer simulations and experimental sig-
nals demonstrate that the proposed classification frame-
work shows better performance than several state-of-art
methods in classifying not only single and multiple PQD
signals but also PQD signals with different noise levels.
More importantly, our framework has superior performance
in detecting nonlinearly mixed PQD signals.

Index Terms—Kernel SVM, optimized S-Transform (OST),
power quality disturbance (PQD), time-frequency resolu-
tion, nonlinearly mixed PQD

I. INTRODUCTION

IN recent years, power quality issues have received
widespread attention due to the fact that power networks

commonly have a large number of non-linear loads such as
automotive charging piles, power transfer switches, power
electronics devices, and many others [1]. Additionally, the
development of renewable energy like wind and geothermal
energy has also a certain impact on the grid signals. The
use of multiple loads and energy resources will generate
different power quality disturbances (PQDs), such as swell,
sag, transient and spike [2]. Meanwhile, multiple complex
PQD signals are also generated from these single disturbances
[3]. To establish a reliable and safe power supply system,
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accurate detection and classification of these PQD signals are
important to deal with disturbance pollution problems. For
example, real-time monitoring can be used for protection while
offline detection is used to analyze signal components and
compensation equipment [4]. To improve the classification per-
formance of complex single and mixed PQD signals, effective
signal detection and classification technologies are in demand.

Many detection frameworks have been developed to analyze
PQD signals. These frameworks consist of two parts: time-
frequency analysis and PQD classification. Since the features
of PQD signals are inconspicuous, the time-frequency analysis
methods are used to extract the characteristics of PQD signals
in the time domain or frequency domain. In [5], both the
time and frequency scales of PQD signals are decomposed
using Gabor-Wigner Transform. Other examples include en-
semble Empirical Mode Decomposition (EMD) [6], Short-
Time Fourier Transform (STFT) [7] and Stockwell Transform
(ST) [8]. The orthogonality between different intrinsic mode
functions (IMFs) was improved using the orthogonal EMD
[9]. However, the endpoint effect at the IMF component
boundary is still in presence. Thereafter, because the fixed
window parameters of STFT are not adaptive to the non-
stationary signals, the discrete wavelet transform (DWT) was
then chosen to analyze the stationary and transient components
of PQD signals [10]. However, DWT is sensitive to noise.
As an extension of DWT, various window parameter setting
methods were proposed for ST, including adjustable window
width and optimally concentrated discrete window [11], [12].
For example, a nonlinear Gaussian window standard deviation
was integrated into the fast discrete ST (FDST) in [13].
The resolution of FDST is better than traditional ST, but
the window parameters under complex PQD still need to be
determined empirically. Moreover, one problem is that the
resolution interval of time-frequency analysis between high
and low frequencies is difficult to increase. Therefore, effective
methods are needed to further improve the time-frequency
accuracy of complex PQD signals.

In the PQD classification step, different statistical features,
such as skewness, kurtosis and instantaneous harmonic distor-
tion, are first extracted from the time-frequency information
and then fed to the classifier [14]. It is noted that differ-
ent kinds of features have a great impact on the classifier.
Thereafter, various classification methods and their improved
algorithms are proposed for accurate PQD classification. The
Decision Tree (DT) was used to distinguish 13 commonly dis-
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turbances based on four features [4]. In addition, an improved
weighted bidirectional Extreme Learning Machine was used to
detect multiple disturbances [15]. However, this method has
insufficient noise resistance due to limited feature information.

Recently, the Support Vector Machine (SVM) based meth-
ods were proposed to provide a reliable solution for a large
number of features. A dual multiclass SVM with 58 binary
models was proposed to classify 14 types of PQD [16]. It is
easy to find that the number of binary models will increase
exponentially as the category of disturbances increases. In
[10], a SVM method was used to classify the global distur-
bance ratio index. Nevertheless, the classification accuracy is
easily affected by features because only two types of features
were used. On the other hand, other SVM methods were
also used in PQD detection due to its rigorous theoretical
fundamental, including rank wavelet SVM and directed acyclic
graph SVM [6], [17]. But their performance of SVM is
constrained by a single kernel function that has limited data
mapping capabilities.

Combining time-frequency analysis and classifier, different
classification frameworks were designed to identify PQDs,
such as the framework based on DWT-Fast Fourier transform
[18] and hyperbolic ST with DT [19]. It is worth noting that
most of their features are statistical features that can guarantee
the calculation speed [20]. However, the handicraft features
may lead to the loss of critical information, especially for
mixed PQDs, e.g., irrelevant features. In [21], the energy
distribution feature was employed as input to the classifier.
It ultimately leads to an unsatisfactory classification result.
To address this, the feature screening methods were used to
select an appropriate feature set based on the optimization
strategies [22]–[24]. However, the complexity increases due
to a large number of features being designed and selected. A
simple yet efficient feature selection method helps to simplify
the classification model.

This paper aims to increase the accuracy under multiple
complex disturbances. Our contributions are listed as follows:

1) To improve the resolution of time-frequency analysis,
an optimized ST (OST) is proposed to decompose PQD
signals. Integrating frequency segmentation with maxi-
mum energy concentration, OST obtains high frequency
resolution at high frequencies while maintaining high
time resolution at low frequencies.

2) To enhance the ability of classification, a composite
kernel SVM is proposed to form a new kernel SVM
(KSVM) for automatically classifing multiple features.
Particularly, KSVM improves discriminative information
that benefits to classify multi-source features.

3) A multiple PQD classification framework is also proposed
based on OST and KSVM. Instead of designing features
manually, multi-source feature information is used to
enhance classification performance under multiple distur-
bances.

4) Extensive experiments have been carried out to verify the
proposed framework. In addition to testing our frame-
work on single and multiple PQD signals, we are the
first to classify the nonlinearly mixed PQD signals. The

evaluation results show that our framework has superior
performance compared with several state-of-the-arts.

The remaining part of this paper is organized as follows.
Section II introduces the proposed OST. In Section III, KSVM
is presented to classify the signals based on multi-source infor-
mation. The framework OST-KSVM of the PQD classification
is proposed in Section IV. Then, experiments are conducted
in Section V. Finally, the entire paper is concluded in Section
VI.

II. OPTIMIZED S-TRANSFORM

A. Motivation

The time and frequency information is important for accu-
rate detection of multiple PQD signals. However, the resolu-
tion of the traditional S-Transform is difficult to meet the re-
quirements of the classifier, especially for mixed disturbances.
An S-Transform with two resolutions was selected as the time-
frequency analysis of PQD signals [17]. The ST with two
resolutions can be described as

ST(τ, f) =
∫ ∞
−∞

x(t)

√
λ1,2|f |√
2π

e−
(τ−t)2λ1,2|f|

2 e−j2πftdt (1)

where x(t) denotes the PQD signals, f denotes the signal
frequency. The Gaussian window function of S-Transform

is g(f) =

√
λ1,2|f |√
2π

e−
(τ−t)2λ1,2|f|

2 , and λ1,2 = {λ1, λ2}
denotes the window parameters. To obtain better time reso-
lution in low frequency part and better frequency resolution
in high frequency part, the frequency intervals are set to
f 6 1.5f0, λ1 > |f | and f > 1.5f0, 0 < λ2 < |f |, where f0
is the fundamental frequency, λ1 and λ2 are used to control
the resolution of low frequency and high frequency bands,
respectively. The boundary frequency is determined by the
intermediate value of the second harmonic frequency and the
fundamental frequency. Therefore, the standard deviation σ(f)
can be obtained as

σ(f) =
1√

λ1,2|f |
(2)

To achieve high resolutions in both high and low frequen-
cies, ST divides the frequency component into two parts using
the boundary 1.5f0 and fixed values of λ1,2. The double
resolution works perfectly for single PQD signals. However, it
is quite difficult to achieve the satisfactory resolution for mixed
PQDs using fixed λ1,2 values. To address this, an Optimized S-
Transform (OST) is proposed to dynamically adjust parameter
λ1,2.

B. Proposed OST

Here, an OST using the energy concentration is proposed
to dynamically adjust parameter λ1,2. Our OST has the same
definition as shown in Equation (1). The sampling rate is set
to fs, τ = m/fs and f = nfs/N . When n > 0, the discrete
OST of x(n) can be expressed as

OST(m,n) =
N−1∑
r=0

X(n+ r)G(n)e
2πrmj
N (3)



0278-0046 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2952823, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

where X(n + r) and G(n) are the Fourier transform results
of discrete x(n) and Gaussian window g(f), respectively.
Motivated by [25], the energy concentration of the discrete
OST can be calculated by

EOST(λ1, λ2) =
1

M∑
m=1

N∑
n=1
| OST(m,n)√∑∑

|OST(m,n)|2
|

(4)

where matrix OST(m,n) is of size M ×N .
The goal of optimization analysis is to maximize energy

concentration EOST, namely argmax(EOST(λ1, λ2)).
The time resolution of the low frequency corresponding

to λ1 should be sufficiently high to meet the minimum
conditions. On the other hand, the time resolution for the
high frequency band corresponding to λ2 should have a
maximum limit to satisfy a high frequency resolution. To
quickly obtain the proper window parameters, the parameter
constraints should be considered. Thus, the time resolution is
set to satisfy

m1Ts < σ(f) < m2Ts (5)

where Ts = 1/fs is the sampling period, m1 and m2 are the
numbers of sampling periods to control the time resolutions.
Combining Equations (2) and (5), the constraints of λ1 and
λ2 can be further obtained as

λ1 <
1

fmax(m1Ts)2
, and λ2 >

1

fmin(m2Ts)2
(6)

where fmin and fmax are the maximum and minimum fre-
quencies in different frequency bands. Finally, the optimization
problem can be summarized as follows

argmin
λ1,λ2

{EOST(λ1, λ2)}

s.t. λ1 ∈ (1.5f0, 1/fmax(m1Ts)
2)

λ2 ∈ [1/fmin(m2Ts)
2, 1.5f0)

(7)

It can be seen that Equation (7) is a nonlinear optimization
problem. An interior point method is used to solve this
problem [26]. In this work, the sampling frequency fs = 3200
Hz, m1 = 10 and m2Ts = 0.05. Thus, λ1 and λ2 can be set
to λ1 ∈ (75, 1365) and λ2 ∈ [5.33, 75). To speed up the
optimization process, the parameter space narrows down to
λ1 ∈ (75, 200).

In fact, OST is a complex-valued matrix, and can be
expressed as

OST(m,n) = |OST(m,n)|ejφ(m,n) (8)

where |OST(m,n)| and φ(m,n) are the amplitude and
phase angle of OST(m,n), respectively. For simplicity, the
OSTA(m,n) = |OST(m,n)| is set as the amplitude of the
OST in time-frequency analysis.

C. Signal Analysis Using OST
To verify the effectiveness of the proposed OST, OST is

compared with different algorithms including traditional ST
and DRST [17], [27], for analyzing complex signals.

Fig. 1 illustrates the comparison results of different time-
frequency analysis methods. Three types of PQD signals occur

Fig. 1. Comparison results on voltage sag with harmonics and spikes.
The start and end time of the sag is 0.02 s and 0.08 s. The magnitude
of the sag is 0.4 p.u.. The 2nd and 3rd harmonics are used, and the
amplitudes of the 2nd and 3rd harmonics are 0.23 p.u. and 0.28 p.u.
respectively. The amplitude range of the spike is 1.20 p.u.. (a) Input
signal. (b) Traditional ST. EST = 100.35. (c) DRST. EDRST = 54.62.
(d) Proposed OST. The optimized parameters are λ1 = 199, λ2 = 5.3,
and EOST = 53.73.

simultaneously within 0.2 ms. It is worthy to notice that only
key frequency points are selected to reduce the calculation
complexity of DRST and OST. Fig. 1(a) shows that the
traditional ST is insensitive to sag and spike signals. The time
interval of DRST is wider than that of OST. This means that
OST has a higher time resolution. In addition, the spike signal
of OST in Fig. 1(d) shows more details. This indicates that
OST has a better energy concentration than the traditional ST
and DRST.

The effect of different methods are further tested on time-
varying and transient signals. The time-frequency results of
the voltage flicker with transient and harmonics are depicted
in Fig. 2. The traditional ST cannot detect the flicker changes
and has a poor transient detection capability. Both transient and
flicker signals can be detected using DRST and OST. However,
in the OST detection results, the flicker location contains more
detail information, and the reaction of flicker on harmonics is
clear. Specifically, the energy of OST is more concentrated
than that of DRST. The optimal values of λ1 and λ2 are 193
and 5.3, respectively.

After extracting the time-frequency information of PQD
signals, a classifier is needed to further detect and identify
multiple complex disturbances. Next, a new kernel SVM will
be introduced as a classifier for PQD classification.

III. KERNEL SVM

A. Proposed Kernel SVM

Based on the extracted time-frequency information, a kernel
SVM (KSVM) classification method is proposed for PQD clas-
sification. Different from traditional methods, it is unnecessary
to manually design statistical features for different types of
disturbances.

For KSVM, given a set of PQD feature samples D =
{xi, yi}n, where i =1,2,...n, xi is the element of x(n), yi
is the label of xi. Traditionally, only one kernel function is
used to map the feature data D to a high-dimensional space.
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Fig. 2. Comparison results on voltage flicker with transient and har-
monics. The 2nd and 3rd harmonics are used, and the amplitudes of
the 2nd and 3rd harmonics are 0.30 p.u. and 0.21 p.u. respectively. The
amplitude of the flicker is 1.1 p.u.. The frequency of the flicker is 15 Hz.
The transient occurs from is 0.1 to 0.13 s. (a) Input signal. (b) Traditional
ST. EST = 93.36. (c) DRST. EDRST = 56.14. (d) Proposed OST. The
optimized parameters are λ1 = 193, λ2 = 5.3, and EOST = 55.56.

The Gaussian kernel, one of the most commonly used kernel
functions, is used to convert data in SVM [28]. For the two
points xi, xj ∈ D, the Gaussian kernel is deifned as

K(xi, xj) = exp(−‖xi − xj‖
2

2δ2
) (9)

where δ > 0 denotes the width parameter, and δ controlls the
mapping results.

For PQD classification, more information contributes to
identify signals, especially for the mixed disturbances con-
sisting of three single components. Thus, the raw data and
the time-frequency data are combined as the input of the
classifier. To reduce the time of feature design and model
computation, the maximum values of the time and frequency
axes of the time-frequency matrix OST(m, n) are used as input
features of KSVM. The F and T are set as the maximum time
and frequency axes of OSTA(m,n) respectively, i.e., F =
max{OSTA(m,n)row} and T = max{OSTA(m,n)column}.

To deal with these features, a weighted linear combination
kernel is proposed based on the F, T and raw PQD signals
x(n)

Kl(xi, xj) = u1Kf (fi, fj) + u2Kt(ti, tj) + u3Kx(xti, xtj)

s.t. u1 + u2 + u3 = 1
(10)

where Kf , Kt and Kx denote the kernel functions of F, T
and x(n) respectively, u1, u2 and u3 are the weight coeffi-
cients.

To learn the decision plane for classification, the opti-
mization framework of the proposed KSVM is introduced as
follows

min
w,b,ξi

{
‖w‖2

2
+ C

n∑
i=1

ξ2i

}
s.t. yi(w

TKl(xi, xj) + b) ≥ 1− ξi
ξi ≥ 0, i = 1, ..., n

(11)

TABLE I
24 TYPES OF PQD SIGNALS

Class PQ diaturbance Class PQ diaturbance
C1 Normal C13 Interrupt + harmonics
C2 Swell C14 Swell + transient
C3 Sag C15 Sag + transient
C4 Interruption C16 Spike + transient
C5 Harmonics C17 Transient + harmonics + sag
C6 Swell + harmonics C18 Transient + harmonics + swell
C7 Sag + harmonics C19 Transient + harmonics + interrupt
C8 Transient C20 Transient + harmonics + flicker
C9 Flicker C21 Flicker + harmonics + interrupt
C10 Flicker + harmonics C22 Flicker + harmonics + sag
C11 Notch C23 Flicker + harmonics + swell
C12 Spike C24 Spike + transient + swell

where w and b denote the weight vector and bias term of the
decision plane respectively, ξi is the slack variable, C is the
penalty coefficient which represents the tolerance of model
error. Introducing dual Lagrange function, the parameters
of the proposed KSVM model can be obtained via partial
derivatives.

To detect the category of new PQD data z, the decision
function is calculated as

ŷ = sign(wTKl(xi, z) + b) (12)

B. Analysis of Kernel Functions and Parameters

To verify the performance of KSVM, twenty four types of
PQD signals are used. As listed in Table I, they contain nine
single disturbances and fifteen mixed disturbances. All dis-
turbances are generated according to [29] and IEEE standard
1159 [30], and known to be very close to the real data set. The
numerical model of multiple PQDs in Table I can be described
as

x(t) = [Vnormal(t) + Vadd(t)]Vmultiply(t) (13)

where Vnormal(t) is the normal signal, Vadd(t) denotes the
additive disturbance type, such as harmonics, transient, notch
and noise; Vmultiply(t) denotes the disturbance components,
including swell, sag, interrupt and flicker.

The parameters under a single disturbance are set as follows.
The depth of the sag ranging from 0.1 p.u. to 0.9 p.u., the
depth of the swell ranging from 1.1 p.u. to 1.8 p.u.. The depth
range of interruption is set to 0 p.u. to 0.1 p.u.. The duration
of the sag, swell and interruption is set to 1 to 9 times the
fundamental period. The amplitude of the harmonic is set to
0.05 p.u. to 0.3 p.u., and the harmonic order mainly includes
the 3rd, 5th, and 7th harmonics. The total harmonics distortion
is less than 5%. The duration of the transient ranging from 0.5
to 3 times of the fundamental period. The amplitude range of
the spike is 1.1 p.u. to 1.4 p.u., where the amplitude of the
notch is opposite to the spike. The durations of the spike and
notch are 0.01 to 0.05 times of the fundamental frequency
period. The amplitude range of the flicker is 1.1 p.u. to 1.2
p.u.. The frequency of the flicker component varies from 5 to
25 Hz. The mixed PQD signals are randomly generated based
on single perturbed parameters.
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TABLE II
PERFORMANCE UNDER DIFFERENT COMBINATIONS OF KERNEL

FUNCTIONS

Kernel functions Weight coefficients Accuracy (%)
u1 u2 u3

Linear + Polynomial 0.5 0.5 0 79.60
Linear + Gaussian 0.5 0.5 0 93.06
Gaussian + Linear 0.5 0.5 0 96.94

Gaussian + Polynomial 0.5 0.5 0 84.58
Linear kernel 0.5 0.3 0.2 95.64

Polynomial kernel 0.5 0.3 0.2 90.44
Gaussian kernel 0.5 0.3 0.2 97.31
Gaussian kernel 0.8 0.1 0.1 98.12
Gaussian kernel 0.9 0.05 0.05 98.82

The kernel function directly affects the performance of
KSVM because different kernel functions have different data
mapping effects. Therefore, it is important to choose a suitable
kernel function.

To select a proper kernel function, three commonly used
kernel functions are selected to validate the model, including
linear kernel, polynomial kernel and Gaussian kernel. For a fair
comparison, the coefficients δ of the kernel function are set to
be the same. The performance under different combinations
of kernel functions is listed in Table II.

It is observed from the results in Table II that the Gaussian
and linear kernels outperform the polynomial kernel. In addi-
tion, the linear kernel does not perform well as Gaussian ker-
nel. For example, the accuracy rates are 95.64% and 97.31%
when all kernels are set as linear kernel and Gaussian kernel,
respectively. Additionally, the weight coefficient frequency
domain component u1 should have a higher value.

For simplicity, all kernel functions of the combination kernel
are set to Gaussian kernel in the rest of this paper. As for the
coefficients of the kernel functions, the selection of parameters
can be divided into two steps: they are first empirically
determined in a suitable range of values, and then the optimal
parameters are selected in conjunction with the grid search
method. In the first step, the parameter values are searched
by a fixed step size based on the model performance. For
example, the 0.5 and 0.8 are first specified to the parameter
u1, and the result shows that KSVM performs the best when
u1 = 0.8. Then the scope of u1 can be set to [0.5, 0.99]. The
grid search is used to search for the best u1 value when the
step size is set to 0.01. Finally, the coefficients of the kernel
functions are set to u1 = 0.9, u2 = 0.05 and u3 = 0.05
respectively.

After the kernel function and the corresponding coefficient
are specified, the parameters of the Gaussian kernel need to be
further explored. The performance of KSVM under different
kernel parameters is shown in Fig. 3 using the grid search
method. According to the experiment results, the parameter
of Gaussian kernel Kx is set to a constant 3.2. The penalty
coefficient C is set to 2000.

As can be seen, the accuracy increases with the increase of
the parameter δt when the parameter value ranges from 1 to 10.
On the contrary, the parameter δf is negatively correlated with

Fig. 3. Relationship between different kernel parameters and classifica-
tion accuracy.

classification accuracy when δf is higher than 1. The highest
accuracy is obtained at δt = 10 and δf = 1.5. Based on Fig. 3,
the parameters are further fine-tuned, δf = 1.3 and δt = 10.7
are then selected for the kernel function.

IV. PQD CLASSIFICATION FRAMEWORK

Using the proposed OST and KSVM, this section proposes
a framework called OST-KSVM for PQD classification. Its
flowchart is shown in Fig. 4. The framework OST-KSVM can
be divided into two parts:

1) Time-frequency analysis: Calculation of time frequency
amplitude matrix OSTA(m,n) for multiple disturbances
via maximizing energy concentration. The features F , T
are obtained from OSTA(m,n).

2) Automatic classification of PQD signals: Multiple sources
of information, including F , T and x(t), are obtained to
compute the weighted linear combination kernel. Then
the PQD signals can be classified by KSVM.

Thereby, the proposed framework OST-KSVM is further
evaluated by different experiments.

V. EXPERIMENTS AND EVALUATIONS

To verify the effectiveness of the proposed OST-KSVM,
experiments are conducted under noisy and noise-free condi-
tions. In our experiments, 2000 samples per disturbance are
generated in MATLAB. The cross-validation is used to verify
the effect of the model [31], with 800 groups being used for
training, 600 samples for testing and 600 for verification. The
fundamental frequency f0 is 50 Hz, and the window size is
ten times of the fundamental period, namely 640 points for
each signal sample.

A. Performance under different noise levels

The features extracted by time-frequency analysis are di-
rectly related to the validity of classification. In order to verify
the effect of the proposed OST-KSVM under different noise
levels, various noise conditions are verified, as shown in Table
III.
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Fig. 4. Automatic classification framework of PQDs based on OST-
KSVM

TABLE III
PERFORMANCE UNDER DIFFERENT NOISE LEVELS

Kernel functions Accuracy (%) Test time per
Clean 10 dB 20 dB 40 dB sample (ms)

ST-KSVM 94.72 87.32 97.82 98.97 27
OST-KSVM 99.59 88.22 98.82 99.51 88

From Table III, the accuracy rises with the noise level
decreases for KSVM with traditional ST and OST. The per-
formance of KSVM with ST is not higher than 99% under
all the noise levels. However, the accuracy of OST-KSVM
exceeds 99% when the noise level is over 30 dB. The test
time of OST-KSVM is higher than traditional KSVM with ST
due to the iterative optimization process. However, the sample
period is ten times of the fundamental period. It means that
the detection time must be lower than 200 ms per sample to
meet real-time requirements. Table III shows that the proposed
method still meets the real-time requirements. Meanwhile, its
detection accuracy is higher than other methods.

The performance of each PQD under different noise con-
ditions is listed in Table IV. Obviously, the classification
accuracy significantly increases at a low noise level. Con-
cretely, the accuracy of single disturbance is higher than that
of mixed disturbances, indicating that a single signal is easy
to classify. Meanwhile, for mixed disturbances, especially
for three mixed disturbances, the minimum accuracy of the
proposed OST-KSVM is 96.33% even with noise level of
20 dB. The proposed OST-KSVM has good performance for

TABLE IV
DETAILED PERFORMANCE OF OST-KSVM

Class PQD Accuracy (%)
Clean 40dB 20dB

C1 Normal 100 100 99.83
C2 Swell 100 99.83 100
C3 Sag 99.00 97.17 95.67
C4 Interrupt 99.17 98.50 100
C5 Harmonics 100 100 100
C6 Swell + harmonics 99.33 99.83 100
C7 Sag + harmonics 100 100 98.25
C8 Transient 100 100 99.17
C9 Flicker 100 100 100
C10 Flicker + harmonics 100 100 98.67
C11 Notch 100 100 100
C12 Spike 100 100 97.83
C13 Interrupt + harmonics 100 98.83 99.67
C14 Swell + transient 99.00 100 98.67
C15 Sag + transient 99.33 99.00 98.00
C16 Spike + transient 99.33 100 97.17
C17 Transient + harmonics + sag 99.67 99.00 96.83
C18 Transient + harmonics + swell 99.00 99.00 99.00
C19 Transient + harmonics + interrupt 96.67 98.33 96.33
C20 Transient + harmonics + flicker 100 100 97.17
C21 Flicker + harmonics + interrupt 100 99.50 99.50
C22 Flicker + harmonics + sag 99.67 99.67 98.33
C23 Notch + transient + swell 100 100 99.50
C24 Spike + transient + swell 100 100 100

mixed disturbances.

B. Performance under multiple proportions of training
data

To verify performance under different proportions of train-
ing data, the proposed method is compared with different ST
and SVM methods. Meanwhile, as a high spectral resolution
method, the MUSIC method is used to replace the OST
method and combined with kernel SVM (namely MUSIC-
KSVM) [32]. MUSIC-KSVM is then compared with the
proposed method. The experiment results are listed in Table
V.

In MUSIC-KSVM, the inputs of KSVM are the raw PQD
signals and power spectrum signals. Two corresponding Gaus-
sian kernel functions are used. The weight coefficients of the
raw PQD signal and spectral signal are set to 0.4 and 0.6 in
the optimized MUSIC-KSVM1 respectively. Table V shows
that the proposed method outperforms MUSIC-KSVM, indi-
cating that the information provided by the MUSIC method is
insufficient to achieve higher accuracy. It also shows that the
accuracy of different methods increases as the training data
increases. It is worth noting that the detection accuracy of the
proposed method is still above 97% even if the training data
is limited to 10%. Table V shows that the proposed method is
more robust and adaptable by comparison with Quad-SVM.

C. Classification of Nonlinearly Mixed PQDs

For the aforementioned experiments, components of mixed
disturbances are linearly combined together. This, however,
ignores the complexity of nonlinear loads in the real power
systems. To further verify the effectiveness of the proposed
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TABLE V
TEST ACCURACY UNDER DIFFERENT TRAINING DATA IN 20 DB NOISE

Method Training data (%)
10% 20% 30% 40% 50%

MUSIC-KSVM1 83.58 86.66 88.08 89.59 90.09
MOFDST and Quad-SVM [33] – 92.02 – – 94.15

RST and Quad-SVM [34] 88.03 93.31 95.05 96.02 96.38
OST-KSVM 97.33 98.23 98.66 98.82 98.96

KSVM1: the kernel parameters are optimized, –: it is not reported.

Fig. 5. Results of nolinearly mixed disturbances. (a) Voltage transient
with swell. The start and end time of the swell is 0.05 s and 0.135 s. The
magnitude of the swell is 1.70 p.u.. The transient occurs from is 0.05 to
0.085 s. (b) OST of (a). (c) Voltage flicker with transient. The amplitude
and frequency of the flicker are 1.17 p.u. and 22.5 Hz respectively. The
transient occurs from is 0.13 to 0.18 s. (d) OST of (c).

method, the nonlinearly mixed PQD signals are explored and
simulated for the first time.

Two kinds of nonlinearly mixed PQD signals are consid-
ered, including transient with swell and flicker with transient,
as shown in Fig. 5. All the single PQD components are
multiplied to simulate nonlinear changes. It can be seen that
two transient components are detected. There is no significant
difference in the fundamental components.

The classification results are listed in Table VI. It is ob-
served that the classification accuracy of OST-KSVM is higher
than 97.5%. This means that the proposed OST-KSVM has
excellent performance for classifying nonlinearly mixed PQD
signals.

D. Performance Comparison
To further verify the performance of the proposed OST-

KSVM, OST-KSVM is compared with several recently pro-

TABLE VI
PERFORMANCE OF NONLINEARLY MIXED PQDS

Nonlinearly mixed disturbances
Accuracy(%)

Clean 20 dB 40 dB
Transient with swell 98.67 97.50 98.42
Flicker with transient 100 99.00 99.60

TABLE VII
PERFORMANCE COMPARISON WITH OTHER METHODS

Method Num. of PQD Num. of
Features

Noise
(dB)

Accuracy
(%)

DRST and DAG-SVM [17] 9 9 20 97.77
TQWT and MSVM [16] 14 5 20 96.42
WT and SVM [10] 9 2 20 94.22
VMD and DT [4] 14 4 30 96.73
HT and slip-SVDNSA [35] 11 8 20 98.45
ADLINE and FFNN [3] 12 2 20 90.58
HST and DT [19] 13 13 20 96.10
FDST and DT [13] 13 20 30 97.44
DWT and PNN [36] 16 9 20 93.60
ST and NSGA-II [22] 15 26 20 96.43
OST-KSVM 24 Automatic 20 98.82

posed techniques as listed in Table VII. It can be seen that
different methods have different numbers of features. For
example, the ST and NSGA-II method [22] has 26 kinds of
features and obtains a higher accuracy rate. On the contrary,
both the WT and SVM method [10] and the ADLINE and
FFNN method [3] have only 2 features and they have lower
accuracy rates. In the noise level of 30 dB, the FDST and DT
method [13] contains a larger number of features and thus
performs better than the VMD and DT methods [4]. This
means that more effective features are beneficial for classi-
fication. The loss of information can be effectively avoided by
automatic feature extraction. In addition, the methods in [10],
[22] and [16] fail to consider mixed PQDs especially for mixed
PQDs consisting of three single disturbances. In this case, the
proposed OST-KSVM achieves an accuracy of 98.82% even
with a noise level of 20 dB.

E. Experimental Verification Analysis

Different from simulation signals, experimental signals have
high randomness and heterogeneity. To verify the performance
of the proposed OST-KSVM under experimental signals, a
sampling hardware circuit with a real-time acquisition function
is designed to sample the signals. The hardware platform is
shown in Fig. 6.

As can be seen from Fig. 6, the PQD signals are gener-
ated by disturbance signal source Fluke 6105A. After being
preheated for an hour, the instrument randomly generates
different signals includes Normal (C1), Swell (C2), Sag (C3),
Interrupt (C4), Harmonics (C5), Swell with harmonics (C6),
Sag with harmonics (C7) and Flicker (C9) due to the func-
tional limitations of the instrument. Data sampling platform is
composed of 16 bit ADS 8556 (ADC) and 32 bit float point
TMS320VC6748 (DSP). The clock frequency of DSP is set
to 375 MHz. The sampling frequency of ADC is set to 5
kHz. The required frequency is obtained by downsampling.
The signals are collected after passing through the voltage
transformer. After sampling the signals, DSP transmits the
signal data to the computer in real time via the serial interface.
Finally, the signals can be analyzed by the proposed OST-
KSVM. The labels of the disturbance signals are determined
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Fig. 6. Power quality sampling hardware platform. (a) Schematic frame-
work of power quality signal sampling, (b) Hardware platform.

TABLE VIII
PERFORMANCE UNDER THE EXPERIMENTAL SIGNAL

Class Accuracy
(%) Class Accuracy

(%)
Average

accuracy (%)
Test time

per sample (ms)

C1 100 C5 98.33

97.08 92C2 96.67 C6 95.00
C3 98.33 C7 95.00
C4 96.67 C9 96.67

by the set parameters, and the accuracy can be calculated by
comparing the predicted results with the labels corresponding
to the set parameters.

For each type of disturbance signals, 60 samples are gen-
erated. The experimental classification results are listed in
Table VIII. As can be observed, the average accuracy of the
experimental signals is lower than that of the simulated signals.
This means that the noise in hardware circuits reduces the
accuracy of the experiments, and there is precision loss in the
ADC sampling process. The calculation time is less than 200
ms, indicating that it can meet real-time requirements. Hence,
the proposed OST-KSVM has satisfactory performance under
the experimental signals.

VI. CONCLUSION

In this paper, an optimized S-transform and kernel SVM
were proposed to automatic detection and assessment of the
single and mixed PQD signals. The time and frequency
resolutions have been improved by maximizing the energy
concentration in OST. The experimental results showed that
OST has higher time resolution at low frequencies and better
frequency resolution in high frequency intervals. Thereafter,
raw and time-frequency features are integrated and automat-
ically learned by the proposed KSVM. Simulation results of
different kernel functions showed that the linear combination
of kernels has a stronger separability than a single kernel.
Various simulations and experiments were conducted to verify

the proposed framework OST-KSVM, and the results showed
that OST-KSVM has stronger noise immunity and better per-
formance than several existing methods. In particular, several
nonlinearly mixed disturbances were tested and verified for the
first time, and OST-KSVM shows satisfactory results. Finally,
the performance of the proposed OST-KSVM was tested and
verified by the data collected from the experimental platform.
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